首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of endogenous nitric oxide (NO) and NO synthases in healing of indomethacin-induced intestinal ulcers in rats
Authors:Takeuchi Koji  Hatazawa Ryo  Tanigami Mayu  Tanaka Akiko  Ohno Ryoko  Yokota Aya
Institution:Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, 607-8414, Japan. takeuchi@mb.kyoto-phu.ac.jp
Abstract:We examined the roles of nitric oxide (NO) and NO synthase (NOS) isozymes in the healing of indomethacin-induced small intestinal ulcers in rats. Animals were given indomethacin (10 mg/kg, s.c.) and killed 1, 4 and 7 days after the administration. Indomethacin (2 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME: a nonselective NOS inhibitor: 10 mg/kg) and aminoguanine (a relatively selective iNOS inhibitor: 20 mg/kg) were given s.c. once daily for 6 days, the first 3 days or the last 3 days during a 7-day experimental period. Both indomethacin and L-NAME significantly impaired healing of these lesions, irrespective of whether they were given for 6 days, first 3 days or last 3 days. The healing was also impaired by aminoguanine given for the first 3 days but not for the last 3 days. Expression of iNOS mRNA in the intestine was up-regulated after ulceration, persisting for 2 days thereafter, and the Ca(2+)-independent iNOS activity also markedly increased with a peak response during 1-2 days after ulceration. Vascular content in the ulcerated mucosa as measured by carmine incorporation was decreased when the healing was impaired by indomethacin and L-NAME given for either the first or last 3 days as well as aminoguanidine given for the first 3 days. These results suggest that endogenous NO plays a role in healing of intestinal lesions, in addition to prostaglandins, yet the NOS isozyme mainly responsible for NO production differs depending on the stage of healing: iNOS in the early stage and cNOS in the late stage.
Keywords:Indomethacin-induced intestinal ulcer  Healing  Nitric oxide (NO) NO synthases  Angiogenic response
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号