首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alcoholysis and reverse hydrolysis reactions in organic one-phase system with a hyperthermophilic beta-glycosidase
Authors:García-Garibay M  López-Munguía A  Barzana E
Institution:Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, México D.F. 04510, México.
Abstract:Alcoholysis and reverse hydrolysis reactions were performed enzymatically in one-phase water-saturated 1-heptanol systems. Lactose or glucose was used as substrate to produce heptyl-beta-galactoside and/or heptyl-beta-glucoside, respectively. When alcoholysis of lactose was performed at 37 degrees C with beta-galactosidase from Escherichia coli, the initial rate was 14 nmol/mL min, and the limiting factors were the poor solubility of the substrate in 1-heptanol and low thermal stability of the enzyme. When a hyperthermophilic beta-glycosidase was used at 90 degrees C, the rate was 3.14-fold higher; in this case a higher concentration of soluble lactose in the water-saturated heptanol was available to the enzyme due to the higher temperature. The hyperthermophilic beta-glycosidase was also able to use glucose and galactose as substrates to achieve the reverse hydrolysis reaction. As a consequence, when lactose was used as substrate, heptyl-beta-galactoside was formed by alcoholysis, while the released glucose moiety was used in a secondary reverse hydrolysis reaction to produce heptyl-beta-glucoside. Both reactions followed Michaelis-Menten kinetics behavior. Neither lactose nor heptyl glycosides were hydrolyzed by this enzyme in water-saturated heptanol. However, the conversion was limited by a strong product inhibition and the formation of oligosaccharides, especially at high substrate concentrations, reducing the final glycoside yield.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号