首页 | 本学科首页   官方微博 | 高级检索  
     


Caspase inhibition shifts neuroepithelioma cell response to okadaic acid from apoptosis to an apoptotic-like form of death
Authors:Romano Elena  Cannata Stefano  Di Bartolomeo Sabrina  Spinedi Angelo
Affiliation:Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
Abstract:We have previously shown that the protein phosphatase inhibitor okadaic acid (OA) induces caspase-3 activation and apoptosis in CHP-100 human neuroepithelioma cells. Herein we provide a more general picture of the effects brought about by OA in this system, also investigating whether caspase activation is necessary for apoptosis induction. We report that incubation for 24 h with 10 nM OA induced a large fraction of the cell population to undergo premature chromosome condensation (PCC) or mitotic arrest, but not apoptosis. The former two effects were also observed after cell treatment with 20 nM OA; however, at this concentration, typical apoptotic cells were also detected, characterized by pycnotic and fragmented nuclei. Occurrence of the above-mentioned apoptotic figures turned extensive at 100 nM OA. The pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.fmk, 100 microM) fully prevented apoptosis induced by 20 nM OA, increasing PCC incidence. Conversely, 100 nM OA induced an apoptotic-like phenotype, even in the presence of Z-VAD.fmk: in this case, however, nuclei, albeit pycnotic, displayed morphological characteristics distinct from those of typical apoptotic cells; moreover, as assessed by flow cytometry, they were largely unfragmented. The reported OA effects occurred in a setting in which neither p53 nor p21(Cip1/Waf1) was upregulated, thus ruling out a role for these proteins in apoptosis induction. On the other hand, apoptotic doses of OA induced a shift of the retinoblastoma gene product to the hypophosphorylated state and its downregulation by a caspase-dependent mechanism.
Keywords:Okadaic acid   Protein phosphatase   Apoptosis   Mitotic arrest   Premature chromosome condensation   Neuroepithelioma   Caspase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号