首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of a mutated DNA ligase IV gene in the X-ray-hypersensitive mutant SX10 of mouse FM3A cells
Authors:Sado K  Ayusawa D  Enomoto A  Suganuma T  Oshimura M  Sato K  Koyama H
Institution:Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama, Japan.
Abstract:The mouse carcinoma cell line SX10 is a hypersensitive mutant to x-rays and bleomycin. An earlier complementation test suggests that SX10 would belong to x-ray-cross complementing group (XRCC) 4. However, in this study, a human XRCC4 expression vector failed to complement the SX10 phenotype. Consistent with the previous report, SX10 showed the same level of DNA-dependent protein kinase activity as the wild-type SR-1. We isolated and analyzed hybrids between SX10 and human diploid fibroblast cells and found that human chromosome 13 conferred the x-ray resistance to the hybrids, suggesting that a candidate gene would be located on this chromosome. Polymerase chain reaction analysis with these hybrids and x-ray-resistant transformants obtained by introducing human chromosomes into SX10 indicated that the mutant was likely to be defective in DNA ligase IV. Sequence analysis of the DNA ligase IV gene confirmed that a defect in SX10 was attributed to a transition of G to A at nucleotide position 1413 of the gene, leading to an amino acid substitution from Trp at residue 471 to a stop codon. Revertant clones (Rev1-3) derived from SX10 showed a restored x-ray resistance; Rev1 reverted to the original nucleotide G at position 1413, whereas Rev2 and Rev3 to C. Transfection of a mouse DNA ligase IV cDNA vector into SX10 restored the resistance to both x-rays and bleomycin. SX10 showed a reduced frequency of chromosomal integration of transfected DNA, but the revertants restored the frequency found in the wild-type cells. These results suggest a possible involvement of DNA ligase IV in the integration event of foreign DNA as well as a crucial role in DNA double-strand break repair.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号