首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis
Authors:Shin-ichiro S Matsuzaki  Nisikawa Usio  Noriko Takamura  Izumi Washitani
Institution:(1) Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;(2) Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba Ibaraki, 305-8506, Japan
Abstract:Invasion by common carp (Cyprinus carpio) and red swamp crayfish (Procambarus clarkii) in shallow lakes have been followed by stable-state changes from a macrophyte-dominated clear water state to a phytoplankton-dominated turbid water state. Both invasive carp and crayfish are, therefore, possible drivers for catastrophic regime shifts. Despite these two species having been introduced into ecosystems world-wide, their relative significance on regime shifts remains largely unexplored. We compared the ecological impacts of carp and crayfish on submerged macrophytes, water quality, phytoplankton, nutrient dynamics, zooplankton and benthic macroinvertebrates by combining an enclosure experiment and a meta-analysis. The experiment was designed to examine how water quality and biological variables responded to increasing carp or crayfish biomass. We found that even at a low biomass, carp had large and positive impacts on suspended solids, phytoplankton and nutrients and negative impacts on benthic macroinvertebrates. In contrast, crayfish had a strong negative impact on submerged macrophytes. The impacts of crayfish on macrophytes were significantly greater than those of carp. The meta-analysis showed that both carp and crayfish have significant effects on submerged macrophytes, phytoplankton, nutrient dynamics and benthic macroinvertebrates, while zooplankton are affected by carp but not crayfish. It also indicated that crayfish have significantly greater impacts on macrophytes relative to carp. Overall, the meta-analysis largely supported the results of the experiment. Taken as a whole, our results show that both carp and crayfish have profound effects on community composition and ecosystem processes through combined consequences of bioturbation, excretion, consumption and non-consumptive destruction. However, key variables (e.g. macrophytes) relating to stable-state changes responded differently to increasing carp or crayfish biomass, indicating that they have differential ecosystem impacts.
Keywords:Common carp  Density manipulation experiment  Ecosystem engineering  Red swamp crayfish  Regime shifts
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号