首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro
Authors:Martomo Stella A  Mathews Christopher K
Institution:Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA.
Abstract:Deoxyguanosine triphosphate is underrepresented among the four common deoxyribonucleoside triphosphates (dNTPs), typically accounting for just 5-10% of the total dNTP pool. We have asked whether this pool asymmetry affects the fidelity of DNA replication, by use of an in vitro assay in which an M13 phagemid containing the Escherichia coli lacZalpha gene and an SV40 replication origin is replicated by extracts of human cells. By monitoring reversion of either a TGA or TAA codon within the lacZalpha gene, we found that replication in "biologically biased" dNTPs, representing our estimate of the concentrations in HeLa cell nuclei, is not significantly more accurate than when measured in reaction mixtures containing the four dNTPs at equimolar concentrations. However, sequence analysis of revertants revealed significantly different patterns of mispairing events leading to mutation. During replication at biased dNTP levels, mutations at the site 5' to C in the template strand for the TGA triplet were less frequent than seen in equimolar reaction mixtures, suggesting that extension from mismatches at this site is relatively slow, and proofreading efficiency high, when dGTP is the next nucleotide to be incorporated. Mismatches opposite template C, which might have been favored by the low physiological concentrations of dGTP, were not favored in our in vitro system, although one particular substitution at this site, TGA-->TTA, was strongly favored at low dGTP]. An excess of one dNTP was found in our system to be more mutagenic than a corresponding deficiency. We also estimated dNTP concentrations in non-transformed human fibroblasts and found that in vitro replication at these levels caused significantly fewer mutations than we observed under equimolar conditions (100 microM each dNTP). This increased replication fidelity may result from increased proofreading efficiency at the lower dNTP levels; however, replication rates were decreased only slightly at these non-transformed fibroblast concentrations.
Keywords:Deoxyribonucleotides  DNA replication fidelity  DNA precursor asymmetry  In vitro DNA replication  Spontaneous mutagenesis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号