首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microchemical analysis of retina layers in pigmented and albino rats by Fourier transform infrared microspectroscopy
Authors:LeVine S M  Radel J D  Sweat J A  Wetzel D L
Institution:Department of Molecular and Integrative Physiology and the Mental Retardation and Human Development Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
Abstract:Fourier transform infrared (FT-IR) microspectroscopy is a powerful technique that can be used to collect infrared spectra from microscopic regions of tissue sections. The infrared spectra are evaluated to chemically characterize the absorbing molecules. This technique can be applied to normal or diseased tissues. In the latter case, FT-IR microspectroscopy can reveal chemical changes that are associated with discrete regions of lesion sites, which can provide insights into the chemical mechanisms of disease processes. In the present study, FT-IR microspectroscopy was used to analyze sections of retina from normal (pigmented) and albino rats. The outer segments of retinas from pigmented animals were found to have unusually strong absorption values for C&z.dbnd6;C-H unsaturation and carbonyl functional groups. Docosahexaenoic acid (DHA), a major constituent of lipids in the outer segments, also had particularly high absorption values for these functional groups, which suggests that it is responsible for those enhanced absorption values. Absorbance values for the unsaturation and carbonyl functional groups were substantially reduced in the outer segments of retinas from albino animals. This finding, together with data from other studies on light-induced oxidative events in the retina, indicates a loss of DHA by a light-induced mechanism in albino animals. The outer nuclear layer had strong absorbance values for H-C-OH and P&z. dbnd6;O functional groups, which is likely due to the sugar phosphate backbone of DNA. The outer and inner plexiform layers were found to contain greater concentrations of CH(2) and C&z.dbnd6;O functional groups than the outer and inner nuclear layers, which is due to the high concentration of synaptic connections in the former layers. In summary, FT-IR microspectroscopy revealed a unique chemical profile in the outer segments compared to other retinal layers, and this profile was altered in albino animals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号