首页 | 本学科首页   官方微博 | 高级检索  
     


CKbeta-8 [CCL23], a novel CC chemokine, is chemotactic for human osteoclast precursors and is expressed in bone tissues
Authors:Votta B J  White J R  Dodds R A  James I E  Connor J R  Lee-Rykaczewski E  Eichman C F  Kumar S  Lark M W  Gowen M
Affiliation:Department of Bone & Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA.
Abstract:We have previously demonstrated that a tartrate-resistant acid phosphatase (TRAP)-positive subpopulation of mononuclear cells isolated from collagenase digests of human osteoclastoma tissue exhibits an osteoclast phenotype and can be induced to resorb bone. Using these osteoclast precursors as a model system, we have assessed the chemotactic potential of 16 chemokines. Three CC chemokines, the recently described CKbeta-8, RANTES, and MIP-1alpha elicited significant chemotactic responses. In contrast, 10 other CC chemokines (MIP-1beta, MCP-1, MCP-2, MCP-3, MCP-4, HCC-1, eotaxin-2, PARC, SLC, ELC) and 3 CXC chemokines (IL-8, GROalpha, SDF-1) were inactive. None of these chemokines showed any chemotactic activity for either primary osteoblasts derived from human bone explants or the osteoblastic MG-63 cell line. The identity of the osteoclast receptor that mediates the chemotactic response remains to be established. However, all three active chemokines have been reported to bind to CCR1 and cross-desensitization studies demonstrate that RANTES and MIP-1alpha can partially inhibit the chemotactic response elicited by CKbeta-8. CKbeta-8, the most potent of the active CC chemokines (EC(max) 0.1-0.3 nM), was further characterized with regard to expression in human bone and cartilage. Although expression is not restricted to these tissues, CKbeta-8 mRNA was shown to be highly expressed in osteoblasts and chondrocytes in human fetal bone by in situ hybridization. In addition, CKbeta-8 protein was shown to be present in human osteophytic tissue by immunolocalization. These observations suggest that CKbeta-8, and perhaps other chemokines, may play a role in the recruitment of osteoclast precursors to sites of bone resorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号