首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Roles for c-Myc in self-renewal of hematopoietic stem cells
Authors:Satoh Yusuke  Matsumura Itaru  Tanaka Hirokazu  Ezoe Sachiko  Sugahara Hiroyuki  Mizuki Masao  Shibayama Hirohiko  Ishiko Eri  Ishiko Jun  Nakajima Koichi  Kanakura Yuzuru
Institution:Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan.
Abstract:Notch and HOXB4 have been reported to expand hematopoietic stem cells (HSCs) in vitro. However, their critical effector molecules remain undetermined. We found that the expression of c-myc, cyclin D2, cyclin D3, cyclin E, and E2F1 was induced or enhanced during Notch1- or HOXB4-induced self-renewal of murine HSCs. Since c-Myc can act as a primary regulator of G(1)/S transition, we examined whether c-Myc alone can induce self-renewal of HSCs. In culture with stem cell factor, FLT3 ligand, and IL-6, a 4-hydroxytamoxifen-inducible form of c-Myc (Myc/ERT) enabled murine Lin(-)Sca-1(+) HSCs to proliferate with the surface phenotype compatible with HSCs for more than 28 days. c-Myc activated by 4-hydroxytamoxifen augmented telomerase activities and increased the number of CFU-Mix about 2-fold in colony assays. Also, in reconstitution assays, HSCs expanded by c-Myc could reconstitute hematopoiesis for more than 6 months. As for the mechanism of c-myc induction by Notch1, we found that activated forms of Notch1 (NotchIC) and its downstream effector recombination signal-binding protein-J kappa (RBP-VP16) can activate the c-myc promoter through the element between -195 bp and -161 bp by inducing the DNA-binding complex. Together, these results suggest that c-Myc can support self-renewal of HSCs as a downstream mediator of Notch and HOXB4.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号