首页 | 本学科首页   官方微博 | 高级检索  
     


Distribution of Ca2+-ATPase, ATP-dependent Ca2+-transport, calmodulin and vitamin D-dependent Ca2+-binding protein along the villus-crypt axis in rat duodenum
Authors:E J van Corven  C Roche  C H van Os
Abstract:The migration of intestinal epithelial cells from the crypts to the tips of villi is associated with progressive cell differentiation. The changes in Ca2+-ATPase activity and ATP-dependent Ca2+-transport rates in basolateral membranes from rat duodenum were measured during migration along the crypt-villus axis. In addition, vitamin D-dependent calcium-binding protein and calmodulin content were measured in homogenates of six cell populations which were sequentially derived from villus tip to crypt base. Alkaline phosphatase activity was highest at the tip of the villus (fraction I) and decreased more than 20-fold towards the crypt base (fraction VI). (Na+ + K+)-ATPase activity also decreased along the villus-crypt axis but in a less pronounced manner than alkaline phosphatase. ATP-dependent Ca2+-transport in basolateral membranes was highest in fraction II (8.2 +/- 0.3 nmol Ca2+/min per mg protein) and decreased slightly towards the villus tip and base (fraction V). The youngest cells in the crypt had the lowest Ca2+-transport activity (0.9 +/- 0.1 nmol Ca2+/min per mg protein). The distribution of high-affinity Ca2+-ATPase activity in basolateral membranes correlated with the distribution of ATP-dependent Ca2+-transport. The activity of Na+/Ca2+ exchange was equal in villus and crypt basolateral membranes. Compared to the ATP-dependent Ca2+-transport system, the Na+/Ca2+ exchanger is of minor importance in villus cells but may play a more significant role in crypt cells. Calcium-binding protein decreased from mid-villus towards the villus base and was undetectable in crypt cells. Calmodulin levels were equal along the villus-crypt axis. It is concluded that vitamin D-dependent calcium absorption takes primarily place in villus cells of rat duodenum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号