首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endocytosis and Exocytosis Events Regulate Vesicle Traffic in Endothelial Cells
Authors:WD Niles  AB Malik
Institution:(1) Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue (M/C 868), Chicago, IL 60612, USA, US
Abstract:We used water-soluble styryl pyridinium dyes that fluoresce at the membrane-water interface to study vesicle traffic in endothelial cells. Cultured endothelial cells derived from bovine and human pulmonary microvessels were incubated in styryl probes, washed to remove dye from the plasmalemmal outer face, and observed by digital fluorescence microscopy. Vesicles that derived from plasmalemma by endocytosis were filled with the styryl dye. These vesicles were distributed throughout the cytosol as numerous particles of heterogeneous diameter and brightness. Vesicle formation was activated 2-fold following addition of extracellular albumin whereas a control protein, immunoglobulin G, had no effect. Dye uptake was abrogated by labeling at low temperatures and inhibitors of phosphoinositide-3-kinase (PI 3-kinase). Tyrosine kinase inhibitors (genistein and herbimycin A) prevented the albumin-induced vesicle formation. Cytochalasin B prevented vesicle redistribution indicating involvement of actin filaments in translocation of endosomes away from sites of vesicle formation. Styryl dye was lost from cells by exocytosis as evident by the disappearance of discrete fluorescent particles. N-ethylmaleimide and botulinum toxin types A and B caused cells to accumulate increased number of vesicles suggesting that exocytosis was regulated by NSF-dependent SNARE mechanism. The results suggest that phosphoinositide metabolism regulates endocytosis in endothelial cells and that extracellular albumin activates endocytosis by a mechanism involving tyrosine phosphorylation, whereas exocytosis is a distinct process regulated by the SNARE machinery. The results support the hypothesis that albumin regulates its internalization and release in vascular endothelial cells via activation of specific endocytic and exocytic pathways.
Keywords:: Styryl pyridinium dyes —  Digital fluorescence microscopy —  Vesicle dynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号