首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dual and opposing roles of ERK in regulating G(1) and S-G(2)/M delays in A549 cells caused by hyperoxia
Authors:Ko Jen-Chung  Wang Yi-Ting  Yang Jia-Ling
Institution:Molecular Carcinogenesis Laboratory, Department of Life Sciences, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan.
Abstract:This study explores the role of ERK activation in regulating G(1) and S-G(2)/M delays during hyperoxia. We demonstrate here that exposing A549 human alveolar type 2 adenocarcinoma cells to hyperoxia (95% O(2)) for 0.5-24 h time-dependently increases phospho-ERK, phospho-p53(Ser15), p53, and p21(CIP1) protein levels. Decreasing phospho-ERK with the pharmacological inhibitors, PD98059 and U0126, markedly suppresses hyperoxia-stimulated phospho-p53(Ser15), p53, and p21(CIP1), and also restores the hyperoxia-reduced kinase activities of cyclin D1/E1-Cdks. Our results suggest that ERK activation during hyperoxia contributes to the p53/p21-mediated G(1) checkpoint. However, inhibition of ERK signaling during hyperoxia further delays S-phase entry and progression. Hyperoxia induces significant expression of cyclin A/B1 and translocation of cyclin A into nuclei while marginally decreasing cyclin A/B1-Cdks kinase activities, which may be related to nuclear association with p21. Interestingly, inhibition of ERK signaling markedly suppresses the elevation of cyclin A/B1 proteins and cyclin A/B1-Cdks kinase activities during hyperoxia. Taken together, the results presented here suggest that hyperoxia-activated ERK acts upstream of p53 and p21 to suppress G(1)-Cdk activities; however, it is also required for induction of cyclin A/B1 and maintenance of cyclin A/B1-Cdk activities that oppose delays in S-phase entry and progression.
Keywords:ERK  p53  p21CIP1  Cdk  Cyclin  Checkpoint  Hyperoxia
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号