首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Theoretical drug design: 6-azauridine-5'-phosphate--its X-ray crystal structure, potential energy maps, and mechanism of inhibition of orotidine-5'-phosphate decarboxylase.
Authors:W Saenger  D Suck  M Knappenberg  J Dirkx
Abstract:The cytostatic drug 6-azauridine is converted in vivo to 6-azauridine-5′-phosphate (z6Urd-5′-P), which blocks the enzyme orotidine-5′-phosphate decarboxylase (Ord-5′-Pdecase) and therefore inhibits the de novo production of uridine-5′-phosphate (Urd-5′-P). In order to relate the structure and function of z6Urd-5′-P, it was crystallized as trihydrate, space group P212121 with a = 20.615 Å, b = 6.265 Å, c = 11.881 Å, and the structure established by Patterson methods. Atomic parameters were refined by full-matrix least-squares methods to R = 0.066 using 1638 counter measured x-ray data. The ribose of z6Urd-5′-P is in a twisted C(2′)-exo, C(3′)endo conformation, the heterocycle is in extreme anti position with angle N(6)-N(1)-C(1′)-O(4′) at 86.3°, and the orientation about the C(4′)-C(5′) bond is gauche, trans in contrast to gauche, gauche found for all the other 5′-ribonucleotides. Conformational energy calculations show that z6Urd-5′-P may adopt an extreme anti conformation not allowed to Urd-5′-P, and they also predict the same unusual trans, gauche conformation about the C(4′)-C(5′) bond in orotidine-5′-phosphate (Ord-5′-P) and in z6Urd-5′-P, which renders the distances O(2)…O(5′) in z6Urd-5′-P and O(7)…O(5′) in Ord-5′-P comparable. On this basis the function of z6Urd-5′-P as an Ord-5′-Pdecase inhibitor can be explained as being due to its structural similarity with the substrate Ord-5′-P and further clarifies the inhibitory action of 5′-nucleotides bearing the heterocycles oxipurinol, xanthine, or allopurinol J. A. Fyfe, R. L. Miller, and T. A. Krenitsky, J. Biol. Chem. 248 , 3801 (1973)]. With this in mind, new inhibitors for Ord-5′-Pdecase may be designed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号