首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Granular bodies in root primary meristem cells of Zea mays L. var. Cuscoensis K. (Poaceae) that enter young vacuoles by invagination: a novel ribophagy mechanism
Authors:Teruo Niki  Susumu Saito  Daniel K Gladish
Institution:1. Department of Biotechnology, Takushoku University, Tatemachi 815-1, Hachioji, Tokyo, 193-0985, Japan
2. Botany Department, Miami University, 1601 University Blvd, Hamilton, OH, 45011, USA
Abstract:Because it has a very large, very rapidly growing primary root, we evaluated giant maize (Zea mays var. Cuscoensis) as a model organism for root research. Granular inclusions are a common feature of cells in many organisms, but they are not common in root meristems. We here report the presence of granules in root tip cells of giant maize. Seeds were germinated at 20 °C in sterile conditions. Four to 5-day-old primary roots were fixed, embedded, and sectioned for light and electron microscopy. Granules (1–2 μm) were observed in small vacuoles in all cell types of the apical meristem zone and mainly in parenchyma cells of the procambium in the primary meristem zone. Some sections were treated with ribonuclease and/or proteinase and then stained with toluidine blue, methyl green pyronin, or Coomassie brilliant blue. The results were used to determine that the granules were composed primarily of RNA and protein. In electron micrographs, consistent with the enzyme experiment results, granules appeared to be dense aggregates of polyribosomes and rough endoplasmic reticulum. They formed first in the cytosol, then invaginated into an adjacent vacuole. The granules are apparently ephemeral and therefore may not have a function other than being subject to autolysis. We speculate that they are part of a previously undescribed ribophagy system that operates during rapid cell growth and differentiation to regulate translation and recycle granule components.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号