首页 | 本学科首页   官方微博 | 高级检索  
     


PAT1a modulates intracellular transport and processing of amyloid precursor protein (APP), APLP1, and APLP2
Authors:Kuan Yung-Hui  Gruebl Tomas  Soba Peter  Eggert Simone  Nesic Iva  Back Simone  Kirsch Joachim  Beyreuther Konrad  Kins Stefan
Affiliation:Zentrum für Molekulare Biologie (ZMBH), University of Heidelberg, D-69120 Heidelberg, Germany.
Abstract:Understanding the intracellular transport of the beta-amyloid precursor protein (APP) is a major key to elucidate the regulation of APP processing and thus beta-amyloid peptide generation in Alzheimer disease pathogenesis. APP and its two paralogues, APLP1 and APLP2 (APLPs), are processed in a very similar manner by the same protease activities. A putative candidate involved in APP transport is protein interacting with APP tail 1 (PAT1), which was reported to interact with the APP intracellular domain. We show that PAT1a, which is 99.0% identical to PAT1, binds to APP, APLP1, and APLP2 in vivo and describe their co-localization in trans-Golgi network vesicles or endosomes in primary neurons. We further demonstrate a direct interaction of PAT1a with the basolateral sorting signal of APP/APLPs. Moreover, we provide evidence for a direct role of PAT1a in APP/APLP transport as overexpression or RNA interference-mediated knockdown of PAT1a modulates APP/APLPs levels at the cell surface. Finally, we show that PAT1a promotes APP/APLPs processing, resulting in increased secretion of beta-amyloid peptide. Taken together, our data establish PAT1a as a functional link between APP/APLPs transport and their processing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号