首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature and growth in Carcinus maenas L. (Decapoda: Portunidae) larvae reared in the laboratory from hatching through metamorphosis
Authors:Ralph R. Dawirs   Cornelia Pü  schel  Franziska Schorn
Affiliation:

Biologische Anstalt Helgoland, Meeresstation, D-2192, Helgoland, F.R.G.

Abstract:Larvae of Carcinus maenas L. were reared in the laboratory from hatching through metamorphosis at 9, 12, and 18°C. Dry weight (DW) and elemental contents of carbon (C), nitrogen (N), and hydrogen (H) were analysed at short intervals through successive larval moulting cycles (four zoea-stages, megalopa), and newly metamorphosed crabs. C. maenas larvae grew significantly during all instars, at all temperatures tested. Biomass (DW, C, N, H) and energy (Joule) slightly declined shortly before ecdysis in zoea stages. This terminal decrease was more distinct in the megalopa stage, where ≈39 and 83% of the maximum energy attained, was lost at 12 and 18°C, respectively. Changes of biomass and energy in successive moult cycles showed best fits to quadratic equations, whereas their maximum in successive larval instars formed exponential sequences with time. Due to parabolic growth curves, biomass and energy accumulation within single instars were discussed as maximum (MG) and effective growth (EG), considering gain both at times of maximum biomass, and shortly before ecdysis. Metamorphosing larvae achieved EG with 1137% (DW), 1195% (C), 1108% (N), 1395% (H), 1339% (Joule) at 12°C, and 1140% (DW), 1099% (C), 1133% (N), 1225% (H), 1107% (Joule) at 18°C, relative to newly hatched zoea-1. Ash content and inorganic C in newly hatched zoea-1, were 29.4% and 5.5% ash, respectively. The stoichiometric C H N method of Gnaiger & Bitterlich was used to assess protein, lipid, and carbohydrate compositions. Obviously proteins formed the major part of larval biomass (>50% DW). C: N ratios indicate that more lipid than protein was built up shortly after moulting, but relatively more protein was subsequently accumulated. Temperature effects on larval growth (MG, EG), growth rates (GR), and gross growth efficiencies (K1) were discussed. C. maenas zoea stages accumulated energy and biomass with higher efficiencies at 18 than at 12°C. Megalopa growth seemed to be limited at 18°C, showing lower K1 values than at 12°C. N was accumulated with higher efficiencies than C in all larval stages. Characteristic variations in larval K1 values between premoult and ecdysis were discussed. Cumulative gross growth efficiencies (MG-related) were calculated as ≈11 and 10%, at 12 and 18°C, respectively.
Keywords:Carcinus maenas   larval development   elemental analysis   growth rate   gross growth efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号