首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Excessive retinoic acid inhibit mouse embryonic palate mesenchymal cell growth through involvement of Smad signaling
Authors:Huanhuan Zhang  Xiaozhuan Liu  Zhan Gao  Zhitao Li  Jun Yin
Institution:1. College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China;2. Medical College, Henan University of Science &3. Technology, Luoyang, People’s Republic of China;4. The Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China;5. Medical College, Henan University of Science &
Abstract:All-trans retinoic acid (atRA), the oxidative metabolite of retinoic acid (RA), is essential for palatogenesis. Overdose RA is capable of inducing cleft palate in mice and humans. Normal embryonic palatal mesenchymal (EPM) cell growth is crucial for shelf growth. Smad signaling is involved in many biological processes. However, it is not much clear if atRA could affect Smad signaling during EPM cells growth. In this study, the timed pregnant mice with maternal administration of 100?mg/kg body weight of RA by gastric intubation were cervical dislocation executed to evaluate growth changes of palatal shelves by hematoxylin and eosin (H&E) staining. At the same time, a primary mouse EPM (MEPM) cell culture model was also established. MEPM cells were treated with atRA (0.1, 0.5, 1, 5 and 10?μM) for 24, 48 and 72?h. The results indicated that the sizes of the shelves were smaller than those in control. AtRA inhibited MEPM cell growth with both increasing concentration and increasing incubation time, especially at 72?h in vitro. Moreover, atRA significantly increased the mRNA and protein expression levels of Smad7 (P?<?.05), but the mRNA and protein expression levels of PCNA were reduced (P?<?.05). We also found atRA inhibited phosphorylation of Smad2 compared with untreated group (P?<?.05). However, the protein and mRNA levels of Smad2 did not change both in atRA-treated and untreated group (P?>?.05). We demonstrated that RA induced inhibition of MEPM cell growth that could cause cleft palate partly by down-regulation of Smad pathway.
Keywords:Retinoic acid  MEPM  cell growth  Smad
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号