首页 | 本学科首页   官方微博 | 高级检索  
     


Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt
Authors:Liu Songling  Premont Richard T  Kontos Christopher D  Huang Jianhua  Rockey Don C
Affiliation:Duke University Liver Center, Duke University Medical Center, Durham, North Carolina 27710, USA.
Abstract:Endothelin-1 has dual vasoactive effects, mediating vasoconstriction via ETA receptor activation of vascular smooth muscle cells and vasorelaxation via ETB receptor activation of endothelial cells. Although it is commonly accepted that endothelin-1 binding to endothelial cell ETB receptors stimulates nitric oxide (NO) synthesis and subsequent smooth muscle relaxation, the signaling pathways downstream of ETB receptor activation are unknown. Here, using a model in which we have utilized isolated primary endothelial cells, we demonstrate that ET-1 binding to sinusoidal endothelial cell ETB receptors led to increased protein kinase B/Akt phosphorylation, endothelial cell nitric-oxide synthase (eNOS) phosphorylation, and NO synthesis. Furthermore, eNOS activation was not dependent on tyrosine phosphorylation, and pretreatment of endothelial cells with pertussis toxin as well as overexpression of a dominant negative G-protein-coupled receptor kinase construct that sequesters betagamma subunits inhibited Akt phosphorylation and NO synthesis. Taken together, the data elucidate a G-protein-coupled receptor signaling pathway for ETB receptor-mediated NO production and call attention to the absolute requirement for heterotrimeric G-protein betagamma subunits in this cascade.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号