首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling, simulation, and optimization of bacterial leaching reactors
Authors:Crundwell F K
Affiliation:Billiton Centre for Bioprocess Modelling, School of Process and Materials Engineering, University of the Witwatersrand, Johannesburg, South Africa. fcrundwell@billiton.co.za
Abstract:Bacterial leaching represents an unusual problem in biochemical engineering, because the substrate for bacterial growth is not supplied directly, but is a product of another reaction, the leaching of mineral particles. In addition, leaching is a heterogeneous reaction dependent on the particle-size distribution in the feed and on the kinetics of particle shrinkage. In this study, these effects are incorporated in the material balance for each mineral by the number balance. Examination of the number balance gives rise to a novel analysis of the competing technologies for leaching. The model is completed by the addition of material balances for the ferrous and ferric ions, the dissolved oxygen, and for each bacterial species to the number balance for each mineral present in the feed. The model is compared with pilot plant data for three different ores. It is shown that the model is in excellent agreement with the data. The performance of a bacterial leaching reactor is explored using the model, and the washout and sensitivity criteria are determined. It is shown that there are three washout conditions, in which the leaching conversion drops to zero. The washout conditions are dependent on the growth rate of the bacteria, on the rate of dissolution of the mineral, and on the rate of mass transfer of oxygen to the reactor. The critical washout condition is that arising from the rate of mineral dissolution. The optimization of a plant in which continuous tank reactors are configured in series is addressed. This analysis shows that the primary reactor should be between 1.5 and 2 times the size of each of the secondary reactors in a series combination.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号