首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric Modeling of Longitudinal Covariance Structure in Functional Mapping of Quantitative Trait Loci
Authors:John Stephen Yap  Jianqing Fan  Rongling Wu
Affiliation:1. Department of Statistics, University of Florida, Gainesville, Florida 32611, U.S.A.;2. Department of Operation Research and Financial Engineering, Princeton University, Princeton, New Jersey 08544, U.S.A.
Abstract:Summary Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93 , 85–98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L2 penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome‐wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.
Keywords:Covariance estimation  Functional mapping  Longitudinal data  Multivariate normal mixture  Quantitative trait loci
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号