首页 | 本学科首页   官方微博 | 高级检索  
     


Force-induced melting of the DNA double helix 1. Thermodynamic analysis
Authors:Rouzina I  Bloomfield V A
Affiliation:Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA. rouzina@biosci.umn.edu
Abstract:The highly cooperative elongation of a single B-DNA molecule to almost twice its contour length upon application of a stretching force is interpreted as force-induced DNA melting. This interpretation is based on the similarity between experimental and calculated stretching profiles, when the force-dependent free energy of melting is obtained directly from the experimental force versus extension curves of double- and single-stranded DNA. The high cooperativity of the overstretching transition is consistent with a melting interpretation. The ability of nicked DNA to withstand forces greater than that at the transition midpoint is explained as a result of the one-dimensional nature of the melting transition, which leads to alternating zones of melted and unmelted DNA even substantially above the melting midpoint. We discuss the relationship between force-induced melting and the B-to-S transition suggested by other authors. The recently measured effect on T7 DNA polymerase activity of the force applied to a ssDNA template is interpreted in terms of preferential stabilization of dsDNA by weak forces approximately equal to 7 pN.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号