首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films
Authors:Laura Martins Fonseca  Angélica Karine Henkes  Graziella Pinheiro Bruni  Lorena Aparecida Nunes Viana  Catarina Motta de Moura  Wladimir Hernandez Flores  Alexandre Ferreira Galio
Institution:1.Federal University of Pampa,Bagé/RS,Brazil;2.Department of Agroindustrial Science and Technology,Federal University of Pelotas,Pelotas/RS,Brazil
Abstract:The need to replace conventional polymers due to environmental pollution caused by them has led to increased production of biodegradable polymers such as starch. Thus, the application possibilities of starch have increased. In this study, we produced and characterized biodegradable films derived from native and oxidized potato starch. The film-forming solution was prepared with different concentrations of extracted starch (native or oxidized) and a plasticizer (glycerol or sorbitol). Then, the mechanical, barrier, morphological, and structural properties of the films were characterized. The moisture content of the films varied from 15.35?±?1.31 to 21.78?±?0.49%. The elastic modulus of the films ranged from 219?±?14.97 to 2299?±?62.91 MPa. The film of oxidized starch plasticized with sorbitol in the lowest content was the most resistant and flexible; moreover, this film also presented lower water vapor permeability and low solubility in water. Fourier-transform infrared spectroscopic analysis of the biodegradable films indicated the presence of same functional groups as those of starch with bands in the same regions. The film thickness was lower for the films plasticized with glycerol whereas the color variation (Δ?) was lower for the ones plasticized with sorbitol. In case of both plasticizers, the increase in their content decreased the Δ? value. All the biodegradable films presented stability against water absorption owing to their low solubility in water. Morphological evaluation revealed the presence of partially gelatinized starch granules in the films. The roughness parameter (Rq) of the films varied from 3.39 to 10.9 nm, indicating that their surfaces are smooth. X-ray diffraction studies showed a B-type pattern for the starches, which is representative of tubers. Further, the films present higher relative crystallinity (RC) compared to the starches. The biodegradable starch films are uniform, transparent and with low solubility in water. The oxidation of starch and use of sorbitol as a plasticizer resulted in improved properties of the starch films, which is suitable for application.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号