首页 | 本学科首页   官方微博 | 高级检索  
     


Naturally occurring mutations in intestinal sucrase-isomaltase provide evidence for the existence of an intracellular sorting signal in the isomaltase subunit [published erratum appears in J Cell Biol 1991 Dec;115(5):following 1473]
Authors:J A Fransen  H P Hauri  L A Ginsel  H Y Naim
Affiliation:Laboratory for Electron Microscopy, University of Leiden, The Netherlands.
Abstract:Mutations in the sucrase-isomaltase gene can lead to the synthesis of transport-incompetent or functionally altered enzyme in congenital sucrase-isomaltase deficiency (CSID) (Naim, H. Y., J. Roth, E. Sterchi, M. Lentze, P. Milla, J. Schmitz, and H. P. Hauri. J. Clin. Invest. 82:667-679). In this paper we have characterized two novel mutant phenotypes of CSID at the subcellular and protein levels. The first phenotype revealed a sucrase-isomaltase protein that is synthesized as a single chain, mannose-rich polypeptide precursor (pro-SI) and is electrophoretically indistinguishable from pro-SI in normal controls. By contrast to normal controls, however, pro-SI does not undergo terminal glycosylation in the Golgi apparatus. Subcellular localization of pro-SI by immunoelectron microscopy revealed unusual labeling of the molecule in the basolateral membrane and no labeling in the brush border membrane thus indicating that pro-SI is missorted to the basolateral membrane. Mapping of biosynthetically labeled pro-SI with four epitope- and conformation-specific monoclonal antibodies suggested that conformational and/or structural alterations in the pro-SI protein have prevented posttranslational processing of the carbohydrate chains of the mannose-rich precursor and have lead to its missorting to the basolateral membrane. The second phenotype revealed two variants of pro-SI precursors that differ in their content of mannose-rich oligosaccharides. Conversion of these forms to a complex glycosylated polypeptide occurs at a slow rate and is incomplete. Unlike its counterpart in normal controls, pro-SI in this phenotype is intracellularly cleaved. This cleavage produces an isomaltase-like subunit that is transport competent and is correctly sorted to the brush border membrane since it could be localized in the brush border membrane by anti-isomaltase mAb. The sucrase subunit is not transported to the cell surface and is most likely degraded intracellularly. We conclude that structural features in the isomaltase region of pro-SI are required for transport and sorting of the sucrase-isomaltase complex.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号