首页 | 本学科首页   官方微博 | 高级检索  
     


Membrane leakage of solutes after thermal shock or freezing
Authors:A. Daw  J. Farrant  G.J. Morris
Affiliation:Division of Cryobiology, Clinical Research Centre, Harrow, England
Abstract:Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号