首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Precise excision of long terminal repeats of the gypsy (mdg4) retrotransposon of Drosophila melanogaster detected in Escherichia coli cells is explained by its integrase function
Authors:Nefedova L N  Liubomirskaia N V  Il'in Iu V  Kim A I
Abstract:An Escherichia coli model system was developed to estimate the capacity of the integrase of the Drosophila melanogaster retrotransposon gypsy (mdg4) for precise excision of the long terminal repeat (LTR) and, hence, the entire gypsy. The gypsy retrotransposon was cloned in the form of a PCR fragment in the pBlueScript II KS+ (pBSLTR) vector, and the region of the second open reading frame (INT ORF2) of this element encoding integrase was cloned under the lacZ promoter in the pUC19 vector and then recloned in pACYC184 compatible with pBSLTR. The LTR was cloned in such a manner that its precise excision from the recombinant plasmid led to the restoration of the nucleotide sequence and the function of the ORF of the lacZ gene contained in the vector; therefore, it was detected by the appearance of blue colonies on a medium containing X-gal upon IPTG induction. Upon IPTG induction of E. coli XL-1 Blue cells obtained by cotransformation with plasmids pACCint and pBSLTR on an X-gal-containing medium, blue clones appeared with a frequency of 1 x 10(-3) to 1 x 10(-4), the frequency of spontaneously appearing blue colonies not exceeding 10(-9) to 10(-8). The presence of blue colonies indicated that that the integrase encoded by the INT ORF2 (pACYC 184) fragment was active. After the expression of the integrase, it recognized and excised the gypsy LTR from pBSLTR, precisely restoring the nucleotide sequence and the function of the lacZ gene, which led to the expression of the beta-galactosidase enzymatic activity. PCR analysis confirmed that the LTR was excised precisely. Thus, the resultant biplasmid model system allowed precise excisions of the gypsy LTR from the target site to be detected. Apparently, the gypsy integrase affected not only the LTR of this mobile element, but also the host genome nucleotide sequences. The system is likely to have detected only some of the events occurring in E. coli cells. Thus, the integrase of gypsy is actually capable of not only transposing this element by inserting DNA copies of the gypsy retrotransposon to chromosomes of Drosophila, but also excising them, gypsy is excised via a precise mechanism, with the original nucleotide sequence of the target site being completely restored. The obtained data demonstrate the existence of alternative ways of the transposition of retrotransposons and, possibly, retroviruses, including gypsy (mdg4).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号