首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Headspace solid-phase microextraction and gas chromatographic–mass spectrometric screening for volatile hydrocarbons in blood
Authors:Junting Liu  Kenji Hara  Seiichi Kashimura  Masayuki Kashiwagi  Tomoko Hamanaka  Aya Miyoshi  Mitsuyoshi Kageura
Institution:Department of Forensic Medicine, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
Abstract:Optimization for headspace solid-phase microextraction (SPME) was studied with a view to performing gas chromatographic–mass spectrometric (GC–MS) screening of volatile hydrocarbons (VHCs) in blood. Twenty hydrocarbons comprising aliphatic hydrocarbons ranging from n-hexane to n-tridecane, and aromatic hydrocarbons ranging from benzene to trimethylbenzenes were used in this study. This method can be used for examining a burned body to ascertain whether the victim had been alive or not when the burning incident took place. n-Hexane, n-heptane and benzene, the main indicators of gasoline components, were found as detectable peaks through the use of cryogenic oven trapping upon SPME injection into a GC–MS instrument. The optimal screening procedure was performed as follows. The analytes in the headspace of 0.2 g of blood mixed with 0.8 ml of water plus 0.2 μg of toluene-d8 at −5°C were adsorbed to a 100-μm polydimethylsiloxane (PDMS) fiber for 30 min, and measured using the full-mass-scanning GC–MS method. The lower detection limits of all the compounds were 0.01 μg per 1 g of blood. Linearities (r2) within the range 0.01 to 4 μg per 1 g of blood were only obtained for the aromatic hydrocarbons at between 0.9638 (pseudocumene) and 0.9994 (toluene), but not for aliphatic hydrocarbons at between 0.9392 (n-tridecane) and 0.9935 (n-hexane). The coefficients of variation at 0.2 μg/g were less than 8.6% (n-undecane). In conclusion, this method is feasible for the screening of volatile hydrocarbons from blood in forensic medicine.
Keywords:Volatile hydrocarbons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号