首页 | 本学科首页   官方微博 | 高级检索  
     


Conversion of lysine to N(epsilon)-(carboxymethyl)lysine increases susceptibility of proteins to metal-catalyzed oxidation.
Authors:J R Requena  E R Stadtman
Affiliation:National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892-0320, USA. requena@nih.gov
Abstract:Metal-catalyzed oxidation (MCO) of proteins leads to the conversion of some amino acid residues to carbonyl derivatives, and may result in loss of protein function. It is well documented that reactions with oxidation products of sugars, lipids, and amino acids can lead to the conversion of some lysine residues of proteins to N(epsilon)-(carboxymethyl)lysine (CML) derivatives, and that this increases their metal binding capacity. Because post-translational modifications that enhance their metal binding capacity should also increase their susceptibility to MCO, we have investigated the effect of lysine carboxymethylation on the oxidation of bovine serum albumin (BSA) by the Fe(3+)/ascorbate system. Introduction of approximately 10 or more mol CML/mol BSA led to increased formation of carbonyls and of the specific oxidation products glutamic and adipic semialdehydes. These results support the view that the generation of CML derivatives on proteins may contribute to the oxidative damage that is associated with aging and a number of age-related diseases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号