首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of substrates and inhibitors with the homoserine dehydrogenase of kinase-inactivated aspartokinase I.
Authors:J K Wright  M Takahashi
Abstract:The aspartokinase activity of the aspartokinase-homoserine dehydrogenase complex of Escherichia coli was affinity labeled with substrates ATP, aspartate, and feedback inhibitor threonine. Exchange-inert ternary adducts of Co(III)-aspartokinase and either ATP, aspartate or threonine were formed by oxidation of corresponding Co(II) ternary complexes with H2O2. The ternary enzyme-Co(III)-threonine adduct (I) had 3.8 threonine binding sites per tetramer, one-half that of the native enzyme. The binding of threonine to I was still cooperative as determined by equilibrium dialysis (nH = 2.2) or by studying inhibition of residual dehydrogenase activity (nH = 2.7). Threonine still protected the SH groups of I against 5,5'-dithiobis(2-nitrobenzoate) (DTNB) reaction but the number of SH groups reacting with thiol reagents (DTNB) was reduced by 1-2 per subunit in the absence of threonine. This suggests either that Co(III) is bound to the enzyme via sulfhydryl groups or that 1-2SH groups are buried or rendered inaccessible in I. The binding of threonine to sites not blocked by the affinity labeling produced changes in the circular dichroism of the complex comparable to changes produced by threonine binding to native enzyme and also protected against proteolytic digestion. The major conformational changes produced by threonine are thus ascribable to binding at this one class of regulatory sites. The interactions of kinase substrates with various aspartokinase-Co(III) complexes containing ATP, aspartate, or threonine and a threonine-insensitive homoserine dehydrogenase produced by mild proteolysis were studied. The inhibition of homoserine dehydrogenase by kinase substrates is not due to binding of these inhibitors at the kinase active site but was shown to be due to binding to sites within the dehydrogenase domain of the enzyme. L-alpha-Aminobutyrate, a presumed threonine analogue, also inhibits the dehydrogenase by binding at the same or similar sites in the dehydrogenase domain and not at threonine regulatory site.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号