Prostaglandin H synthase catalyzes regiospecific release of tritium from labeled estradiol |
| |
Authors: | G H Degen P H Jellinck R J Hershcopf |
| |
Affiliation: | University of Würzburg, Institute of Toxicology, FRG. |
| |
Abstract: | Prostaglandin H synthase (PHS) from ram seminal vesicle microsomes was found to catalyze the release of tritium (3H) from estradiol (E2) regiospecifically labeled in position C-2 or C-4 of ring A but not from positions C-17 alpha, C-16 alpha, or C-6,7. Formation of 3H2O from ring A of E2 is dependent upon native enzyme supplemented with either arachidonic acid, eicosapentaenoic acid, or hydrogen peroxide and proceeds very rapidly as do other cooxidation reactions catalyzed by PHS-peroxidase. The 3H-loss from ring A of E2 reflecting oxidative displacement of this isotope by PHS increases linearly up to 100 microM under our conditions (8-45 nmol/mg x 5 min). Loss of tritium in various blanks is negligible by comparison. Indomethacin (0.07 and 0.2 mM) inhibited the PHS-dependent release of 3H2O from estradiol but less efficiently than it inhibited DES-cooxidation measured in parallel incubations under similar conditions. Addition of EDTA (0.5 mM) had no effect on the regiospecific transfer of 3H from E2 or on DES-oxidation; ascorbic acid (0.5 mM) or NADH (0.33 mM) clearly inhibited both reactions and to a similar extent. These data suggest that estradiol-2/4-hydroxylation can be catalyzed by PHS in vitro probably via its peroxidase activity and point to PHS as an enzyme that could contribute to catechol estrogen formation in vitro by tissue preparations in the presence of unsaturated fatty acids or peroxides. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|