首页 | 本学科首页   官方微博 | 高级检索  
     

PLS-ANN判别分析自体荧光光谱识别胃癌
引用本文:马君,史晓凤,郑荣儿,朱玉平,李颖,毛伟征,孟继武. PLS-ANN判别分析自体荧光光谱识别胃癌[J]. 激光生物学报, 2005, 14(6): 432-436
作者姓名:马君  史晓凤  郑荣儿  朱玉平  李颖  毛伟征  孟继武
作者单位:中国海洋大学物理系,中国山东,青岛,266071;青岛大学医学院附属医院普外科,中国山东,青岛,266003
基金项目:国家自然科学基金项目(30070728),青岛市自然科学基金项目(03-2-jz-11)(KGCX2-405)
摘    要:本文对58例胃癌病人离体标本的癌浆膜和正常浆膜进行以308nm为激发光的自体荧光光谱检测,采用多因素分析法进行光谱信息提取,以识别胃癌。研究表明偏最小二乘法结合神经网络法(简称PLS—ANN)进行判别分析,诊断胃癌的灵敏度为86%,特异度为100%,准确率为93%,有望成为手术中快速识别胃癌在胃壁的浸润范围的有效方法。

关 键 词:胃肿瘤  自体荧光光谱  偏最小二乘法  人工神经网络
文章编号:1007-7146(2005)06-0432-05
收稿时间:2005-09-06
修稿时间:2005-09-06

PLS-ANN Discriminant Analysis on Autofluorescence Spectra to Identify Gastric Cancer
MA Jun,SHI Xiao-feng,ZHENG Rong-er,ZHU Yu-ping,LI Ying,MAO Wei-zheng,MENG Ji-wu. PLS-ANN Discriminant Analysis on Autofluorescence Spectra to Identify Gastric Cancer[J]. ACTA Laser Biology Sinica, 2005, 14(6): 432-436
Authors:MA Jun  SHI Xiao-feng  ZHENG Rong-er  ZHU Yu-ping  LI Ying  MAO Wei-zheng  MENG Ji-wu
Affiliation:MA Jun1,SHI Xiao-feng1,ZHENG Rong-er1,ZHU Yu-ping1,LI Ying1,MAO Wei-zheng2,MENG Ji-wu1
Abstract:Measurement of fluorescence spectra was performed at excitation wavelength of 308 nm and emission wavelength in the range of 328 nm~596 nm. The partial Least-squares and artificial neural network (PLS-ANN) method was used to analyze autofluorescence spectra of gastric cancer. The 58 cancer samples and normal samples were taken from stomach serosa. The normalized and centerized spectra of two kinds of samples showed similar but divergent patterns. PLS-ANN classification algorithm could differentiate cancer tissues from normal tissues with a sensitivity of 86%,a specificity of 100% and a total success rate of 93%. We concluded therefore that the PLS-ANN method was a fast, more effective choose for identification of gastric cancer.
Keywords:stomach neoplasmas  autofluorescence spectroscopy  partial-least squares  artificial neural networks
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号