首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The procaryotic nature of the fatty acid synthetase of developing Carthamus tinctorius L. (safflower) seeds
Authors:Takashi Shimakata  Paul K Stumpf
Institution:Department of Biochemistry and Biophysics, University of California, Davis, California 95616 U.S.A.
Abstract:All component activities involved in the synthesis of fatty acid were detected in crude extracts of developing safflower seeds. The crude extracts were fractionated into three portions by polyethylene glycol (0–5, 5–15, and 15% supernatant). Acetyl-CoA:acyl carrier protein (ACP) transacylase was precipitated about 66% by 5% polyethylene glycol. β-Ketoacyl-ACP reductase and enoyl-ACP reductase I were completely recovered in the 5–15% fraction. β-Ketoacyl-ACP synthetase and enoyl-ACP reductase II were in the 15% supernatant fraction. Malonyl-CoA:ACP transacylase and β-hydroxyacyl-ACP dehydrase were distributed into both fractions of 5–15 and 15% supernatant. When the 5–15% fraction was gel-filtrated on Sephadex G-200 column, β-hydroxyacyl-ACP dehydrase and malonyl-CoA:ACP transacylase were clearly separated from other enzymes, but β-Ketoacyl-ACP reductase and enoyl-ACP reductase I overlapped. However, by hydroxyapatite chromatography, these two reductases were clearly separated. Properties of each enzyme were examined with the samples fractionated by polyethylene glycol. β-Ketoacyl-ACP reductase preferably utilized NADPH (Km = 16 μM) as hydrogen donor. The Km for acetoacetyl-ACP was 9 μm. β-Hydroxyacyl-ACP dehydrase had a Km of 12 μm for crotonyl-ACP. Enoyl-ACP reductase had two forms, I and II, and these two reductases differed from each other as follows: (a) separation by polyethylene glycol (15%) fractionation; (b) the optimum pH; (c) the hydrogen donor specificity; (d) the substrate specificity. From these results, it is concluded that the FAS system of developing safflower seeds was nonassociated and similar to the procaryotic type of Escherichia coli.
Keywords:Author to whom all correspondence should be sent  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号