首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polyphosphoinositide synthesis in rabbit erythrocyte membranes
Authors:Eugene E Quist
Institution:Department of Pharmacology, North Texas State University/Texas College of Osteopathic Medicine, Fort Worth, Texas 76107 USA
Abstract:Incubation of rabbit erythrocyte ghosts at 25 °C with 1 mm γ-32P]ATP and MgCl2 results in incorporation of 32P into diphosphoinositide and triphosphoinositide with initial rates of 15.6 and 1.8 nmol 32P/mg/h, respectively. Incorporation of 32P into diphosphoinositide plateaus after 20 min whereas incorporation into triphosphoinositide did not plateau until after 80 min. Diphosphoinositide and triphosphoinositide, prelabeled with 32P, did not undergo significant breakdown when incubated at 25 °C for 15 to 20 min. Turnover of 32P-labeled diphosphoinositide and triphosphoinositide was insignificant in the presence of MgCl2 and cold ATP. Diphosphoinositide is not phosphorylated to triphosphoinositide in the presence of Mg-ATP under conditions in which synthesis of these polyphosphoinositides can occur. In the presence of neomycin and Mg-ATP, labeled diphosphoinositide was rapidly phosphorylated to triphosphoinositide. Neomycin had no effect on labeled di- and triphosphoinositide content in the absence of ATP. Freeze-thawing the ghosts or the addition of Triton X-100 does not produce the same effect as neomycin. The results of this investigation suggest that diphosphoinositide and triphosphoinositide are normally synthesized from endogenous phosphatidylinositol in rabbit ghosts by separate enzymatic pathways. Neomycin an aminoglycoside which interacts with polyphosphoinositides may perturb the organization of substrates and kinase activities involved in polyphosphoinositide metabolism and alter these pathways.
Keywords:To whom correspondence should be sent: Istituto di Chimica Biologica-Facoltà di Farmacia via del Giochetto—C  P  37  succ  3-06100 Perugia  Italy  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号