Properties of microsomal acyl coenzyme A reductase in mouse preputial glands |
| |
Authors: | Claudia Moore Fred Snyder |
| |
Affiliation: | 1. Medical and Health Sciences Division, Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 USA;2. The University of Tennessee-Oak Ridge Graduate School of Biomedical Sciences, Oak Ridge, Tennessee 37830 USA |
| |
Abstract: | Synthesis of long-chain fatty alcohols in preputial glands of mice is catalyzed by an NADPH-dependent acyl coenzyme A (CoA) reductase located in microsomal membranes; sensitivity to trypsin digestion indicates that the reductase is on the cytoplasmic side of the membrane. Results with pyrazole and phenobarbital demonstrate the reaction is not catalyzed by a nonspecific alcohol dehydrogenase or an aldehyde reductase. Acyl-CoA reductase activity is sensitive to sulfhydryl and serine reagent modification, is stimulated by bovine serum albumin, and produces an aldehyde intermediate. The activity is extremely detergent sensitive and cannot be restored even after removal of the detergents. Phospholipase C or asolectin treatment does not release the acyl-CoA reductase from microsomal membranes, but causes a significant decrease in the activity recovered in the membrane pellet. Glycerol does not solubilize the reductase activity, nor does 3.0 m NaCl; however, the combination of glycerol and 3.0 m NaCl did release about 50% of the acyl-CoA reductase from the microsomal pellet. Substrate concentration curves obtained in the presence or absence of bovine serum albumin show significant differences in enzyme activities. The reductase is sensitive to the concentration of palmitoyl-CoA and is progressively inhibited at levels beyond the critical micellar concentration of the substrate. The apparent Km for acyl-CoA reductase is 14 μm; however, the maximum velocity varies with the concentration of albumin used. Expression of enzyme activity in delipidated microsomes requires specific phospholipids, which suggests that in vivo regulation of acyl-CoA reductase activity could be achieved through modifications in membrane lipid composition. |
| |
Keywords: | Send correspondence to: Dr. Fred Snyder Medical and Health Sciences Division Oak Ridge Associated Universities P.O. Box 117 Oak Ridge Tenn. 37830. |
本文献已被 ScienceDirect 等数据库收录! |
|