首页 | 本学科首页   官方微博 | 高级检索  
     


Incidence of the introduced parasitoids Cotesia kazak and Microplitis croceipes (Hymenoptera: Braconidae) from Helicoverpa armigera (Lepidoptera: Noctuidae) in tomatoes, sweet corn, and lucerne in New Zealand
Authors:P.J. Cameron   G.P. Walker   T.J.B. Herman  A.R. Wallace
Affiliation:Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
Abstract:Morphological defense traits of plants such as trichomes potentially compromise biological control in agroecosystems because they may hinder predation by natural enemies. To investigate whether plant trichomes hinder red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), as biological control agents in soybean, field and greenhouse experiments were conducted in which we manipulated fire ant density in plots of three soybean isolines varying in trichome density. Resulting treatment effects on the abundance of herbivores, other natural enemies, plant herbivory, and yield were assessed. Trichomes did not inhibit fire ants from foraging on plants in the field or in the greenhouse, and fire ant predation of herbivores in the field was actually greater on pubescent plants relative to glabrous plants. Consequently, fire ants more strongly reduced plant damage by herbivores on pubescent plants. This effect, however, did not translate into greater yield from pubescent plants at high fire ant densities. Intraguild predation by fire ants, in contrast, was weak, inconsistent, and did not vary with trichome density. Rather than hindering fire ant predation, therefore, soybean trichomes instead increased fire ant predation of herbivores resulting in enhanced tritrophic effects of fire ants on pubescent plants. This effect was likely the result of a functional response by fire ants to the greater abundance of caterpillar prey on pubescent plants. Given the ubiquity of lepidopteran herbivores and the functional response to prey shown by many generalist arthropod predators, a positive indirect effect of trichomes on predation by natural enemies might be more far more common than is currently appreciated.
Keywords:Solenopsis invicta   Glycine max   Tritrophic interactions   Trichomes   Functional response   Intraguild predation   Natural enemies   Biological control
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号