首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic properties of myosin heavy chain isoforms in mouse skeletal muscle: comparison with rat, rabbit, and human and correlation with amino acid sequence
Authors:Andruchov Oleg  Andruchova Olena  Wang Yishu  Galler Stefan
Institution:Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria.
Abstract:Stretch activation kinetics were investigated in skinned mouse skeletal muscle fibers of known myosin heavy chain (MHC) isoform content to assess kinetic properties of different myosin heads while generating force. The time to peak of stretch-induced delayed force increase (t3) was strongly correlated with MHC isoforms t3 given in ms for fiber types containing specified isoforms; means ± SD with n in parentheses: MHCI 680 ± 108 (13), MHCIIa 110.5 ± 10.7 (23), MHCIIx(d) 46.2 ± 5.2 (20), MHCIIb 23.5 ± 3.3 (76)]. This strong correlation suggests different kinetics of force generation of different MHC isoforms in the following order:MHCIIb > MHCIIx(d) > MHCIIa >> MHCI. For rat, rabbit, and human skeletal muscles the same type of correlation was found previously. The kinetics decreases slightly with increasing body mass. Available amino acid sequences were aligned to quantify the structural variability of MHC isoforms of different animal species. The variation in t3 showed a correlation with the structural variability of specific actin-binding loops (so-called loop 2 and loop 3) of myosin heads (r = 0.74). This suggests that alterations of amino acids in these loops contribute to the different kinetics of myosin heads of various MHC isoforms. isoform structure-function relationship; stretch activation; muscle mechanics
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号