首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Prostaglandin F(2alpha) induces a rapid decline in progesterone production and steroidogenic acute regulatory protein expression in isolated rat corpus luteum without altering messenger ribonucleic acid expression.
Authors:E P Fiedler  L Plouffe  D B Hales  K H Hales  I Khan
Institution:Reproductive Endocrinology, Infertility and Genetics Section, Department of Obstetrics and Gynecology, The Medical College of Georgia, Augusta, Georgia 30912, USA.
Abstract:With interest in steroidogenic acute regulatory protein (StAR) involvement in the luteolytic process, we studied changes in serum progesterone levels and the concomitant expression of StAR mRNA and protein (37-, 32-, and 30-kDa forms) in postovulatory Day 7 corpora lutea (CL) isolated from rats 1 h after injection with prostaglandin F(2alpha) (PGF(2alpha), n = 6) or saline (n = 6). Serum progesterone levels were determined by RIA, StAR and beta-actin mRNA expression by Northern analysis, and StAR and beta-actin protein expression by Western analysis. Adrenal, brain, and spleen from control animals were used as positive and negative controls for StAR expression. Scanning optical densitometry measurements were standardized by dividing the signal strength from each StAR autoradiogram lane by that from the corresponding beta-actin autoradiogram lane. ANOVA was used for significance testing, with alpha set at 0.05. The 37-, 32-, and 30-kDa forms of StAR protein were expressed in all adrenal samples, whereas only the 37- and 30-kDa forms were found in CL. Serum progesterone levels and expression of the 30-kDa and 37-kDa forms of the StAR protein in CL were all found to be significantly lower in the PGF(2alpha)-treated than the saline-treated group. StAR mRNA expression was not significantly different in the saline- and PGF(2alpha)-treated rats. The rapid decline in StAR protein expression that accompanies PGF(2alpha) induced luteolysis, therefore, does not result from significant decline in mRNA expression.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号