首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Speciation is not necessarily easier in species with sexually monomorphic mating signals
Authors:S Noh  C S Henry
Institution:1. Department of Biology, Washington University in St. Louis, St. Louis, MO, USA;2. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
Abstract:Should we have different expectations regarding the likelihood and pace of speciation by sexual selection when considering species with sexually monomorphic mating signals? Two conditions that can facilitate rapid species divergence are Felsenstein's one‐allele mechanism and a genetic architecture that includes a genetic association between signal and preference loci. In sexually monomorphic species, the former can manifest in the form of mate choice based on phenotype matching. The latter can be promoted by selection acting upon genetic loci for divergent signals and preferences expressed simultaneously in each individual, rather than acting separately on signal loci in males and preference loci in females. Both sexes in the Chrysoperla carnea group of green lacewings (Insecta, Neuroptera, Chrysopidae) produce sexually monomorphic species‐specific mating signals. We hybridized the two species C. agilis and C. carnea to test for evidence of these speciation‐facilitating conditions. Hybrid signals were more complex than the parents and we observed a dominant influence of C. carnea. We found a dominant influence of C. agilis on preferences in the form of hybrid discrimination against C. carnea. Preferences in hybrids followed patterns predicting preference loci that determine mate choice rather than a one‐allele mechanism. The genetic association between signal and preference we detected in the segregating hybrid crosses indicates that speciation in these species with sexually monomorphic mating signals can have occurred rapidly. However, we need additional evidence to determine whether such genetic associations form more readily in sexually monomorphic species compared to dimorphic species and consequently facilitate speciation.
Keywords:genetic architecture  hybridization  mate preference  mating signal  one‐allele mechanism  speciation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号