首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The cardiac neural stem cell phenotype is compromised in streptozotocin‐induced diabetic cardiomyopathy
Authors:Viviane El‐Helou  Cindy Proulx  Pauline Béguin  John Assimakopoulos  Hugues Gosselin  Robert Clement  Louis Villeneuve  Julie‐Émilie Huot‐Marchand  Denis DeBlois  Claude Lajoie  Angelino Calderone
Institution:1. Département de Physiologie, Université de Montréal, Montréal, Québec, Canada;2. Montreal Heart Institute, Montreal, Québec, Canada;3. Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada;4. Département de Kinesiologie, Université de Québec à Trois‐Riviéres, Québec, Canada
Abstract:Neural stem cells were identified in the rat heart and during scar formation and healing participated in sympathetic fiber sprouting and angiogenesis. In the setting of diabetes, impaired wound healing represents a typical pathological feature. These findings provided the impetus to test the hypothesis that experimental diabetes adversely influenced the phenotype of cardiac neural stem cells. Streptozotocin (STZ)‐induced diabetic rats were associated with elevated plasma glucose levels, significant loss of body weight and left ventricular contractile dysfunction. In the heart of STZ‐diabetic rats, the density of nestin immunoreactive processes emanating from cardiac neural stem cells were reduced. The latter finding was reaffirmed as nestin protein expression was significantly decreased in the heart of STZ‐diabetic rats and associated with a concomitant reduction of nestin mRNA. Employing the TUNEL assay, the loss of nestin expression in STZ‐diabetic rats was not attributed to widespread cardiac neural stem cell apoptosis. Insulin administration to STZ‐diabetic rats with established hyperglycaemia led to a modest recovery of nestin protein expression in cardiac neural stem cells. By contrast, the administration of insulin immediately after STZ injection improved plasma glucose levels and significantly attenuated the loss of nestin protein expression. These data highlight the novel observation that nestin protein expression in cardiac neural stem cells was significantly reduced in STZ‐induced type I diabetic rats. The aberrant cardiac neural stem cell phenotype may compromise their biological role and predispose the diabetic heart to maladaptive healing following ischemic injury. J. Cell. Physiol. 220: 440–449, 2009. © 2009 Wiley‐Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号