首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations
Authors:Yuka Harada  Hironori Harada
Institution:1. International Radiation Information Center, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan;2. Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
Abstract:AML1/RUNX1 point mutations have been identified in myelodysplastic syndrome (MDS) and MDS‐related acute myeloid leukemia (AML), or MDS/AML, and are distributed throughout the full length of AML1/RUNX1. Gene mutation is proposed to be one of the disease‐defining genetic abnormalities of MDS/AML. Most of the mutants lose trans‐activation potential, which leads to a loss of normal function indicating that AML1/RUNX1 dysfunction is one of the major pathogenic mechanisms of MDS/AML. However, N‐terminal in‐frame mutations (Ni‐type) and C‐terminal truncated mutations (Ct‐type) of AML1/RUNX1 show a dominant‐negative effect on the trans‐activation activity, suggesting that these types of mutants may have some oncogenic potential in addition to the loss of normal function. The patients with Ni‐type mutations have hypoplastic marrows with other genetic abnormalities, whereas the patients with Ct‐type mutations display hyperplastic marrows without other mutations. Although biological analysis using a mouse bone marrow transplantation model transduced with Ni‐type of D171N or Ct‐type of S291fsX300 mutants has partially confirmed the oncogenic ability of AML1 mutants, it could not explain the mutant specific clinical features of MDS/AML. Biological analysis using human CD34+ cells revealed that the two types exhibited distinct molecular mechanisms. Ni‐type shows differentiation block without cell growth, but additional BMI‐1‐expression resulted in increased blastic cells. In contrast, Ct‐type itself has proliferation ability. Thus, AML1/RUNX1 mutants play a central role in the pathogenesis of MDS/AML. Both AML1 mutants are initiating factors for MDS‐genesis by inhibiting differentiation of hematopoietic stem cells, and Ni‐type mutant requires acquisition of proliferation ability. J. Cell. Physiol. 220: 16–20, 2009. © 2009 Wiley‐Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号