首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Scoring ligand similarity in structure‐based virtual screening
Authors:Maria I Zavodszky  Anjali Rohatgi  Jeffrey R Van Voorst  Honggao Yan  Leslie A Kuhn
Institution:1. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA;2. Quantitative Biology Initiative, Michigan State University, East Lansing, Michigan, USA;3. Department of Computer Science & Engineering, Michigan State University, East Lansing, Michigan, USA
Abstract:Scoring to identify high‐affinity compounds remains a challenge in virtual screening. On one hand, protein–ligand scoring focuses on weighting favorable and unfavorable interactions between the two molecules. Ligand‐based scoring, on the other hand, focuses on how well the shape and chemistry of each ligand candidate overlay on a three‐dimensional reference ligand. Our hypothesis is that a hybrid approach, using ligand‐based scoring to rank dockings selected by protein–ligand scoring, can ensure that high‐ranking molecules mimic the shape and chemistry of a known ligand while also complementing the binding site. Results from applying this approach to screen nearly 70 000 National Cancer Institute (NCI) compounds for thrombin inhibitors tend to support the hypothesis. EON ligand‐based ranking of docked molecules yielded the majority (4/5) of newly discovered, low to mid‐micromolar inhibitors from a panel of 27 assayed compounds, whereas ranking docked compounds by protein–ligand scoring alone resulted in one new inhibitor. Since the results depend on the choice of scoring function, an analysis of properties was performed on the top‐scoring docked compounds according to five different protein–ligand scoring functions, plus EON scoring using three different reference compounds. The results indicate that the choice of scoring function, even among scoring functions measuring the same types of interactions, can have an unexpectedly large effect on which compounds are chosen from screening. Furthermore, there was almost no overlap between the top‐scoring compounds from protein–ligand versus ligand‐based scoring, indicating the two approaches provide complementary information. Matchprint analysis, a new addition to the SLIDE (Screening Ligands by Induced‐fit Docking, Efficiently) screening toolset, facilitated comparison of docked molecules' interactions with those of known inhibitors. The majority of interactions conserved among top‐scoring compounds for a given scoring function, and from the different scoring functions, proved to be conserved interactions in known inhibitors. This was particularly true in the S1 pocket, which was occupied by all the docked compounds. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:inhibitor discovery  docking  thrombin  SLIDE  interaction fingerprints  high‐throughput screening  affinity scoring  EON  DrugScore  GOLD score
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号