首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of 100 mT SMF on activation of the hsp70 promoter in a heat shock/luciferase reporter system
Authors:Michelle Belton  Camilla Rozanski  Frank S. Prato  Jeffrey J.L. Carson
Affiliation:1. Imaging Program, Lawson Health Research Institute, London, Ontario, Canada;2. Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
Abstract:Human exposure to magnetic fields, increased through use of new technologies like magnetic resonance imaging (MRI), has prompted investigations into possible effects of static magnetic fields (SMFs) on cellular processes. However, controversy still remains between many studies, which likely results from a lack of uniformity across experimental parameters, including the length of magnetic field exposure, the strength of the magnetic field, and the cell type or organism under investigation. The purpose of this research was to monitor effects of SMF exposure using real‐time luminescence photometry. The study investigated the potential interaction of a 100 mT SMF on a heat shock protein (hsp70)/luciferase reporter construct in stably transfected NIH3T3 cells. Changes in heat shock promoter activation following 100 mT SMF exposure were analyzed and detected as bioluminescence in real‐time. Two heat parameters were considered in combination with sham‐ and 100 mT‐exposed experiments: no heat or 1,800 s heat. As expected, there was a significant increase in bioluminescence in response to 1,800 s of heat alone. However, no significant difference in average hsp70 promoter activation between sham and 100 mT experiments was observed for no heat or 1,800 s heat experiments. Therefore, a 100 mT SMF was shown to have no effect on the activation of the heat shock protein promoter during SMF exposure or when SMF exposure was combined with a heat insult. J. Cell. Biochem. 108: 956–962, 2009. © 2009 Wiley‐Liss, Inc.
Keywords:real‐time  heat shock  bioluminescence  stress response
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号