首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chlorzoxazone hydroxylation in microsomes and hepatocytes from cytochrome P450 oxidoreductase‐null mice
Authors:Li Li  Todd D Porter
Institution:Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536‐0082, USA
Abstract:Previous studies have demonstrated that the NADH‐dependent cytochrome b5 electron transfer pathway can support some cytochrome P450 monooxygenases in vitro in the absence of their normal redox partner, NADPH‐cytochrome P450 oxidoreductase. However, the ability of this pathway to support P450 activity in whole cells and in vivo remains unresolved. To address this question, liver microsomes and hepatocytes were prepared from hepatic cytochrome P450 oxidoreductase‐null mice and chlorzoxazone hydroxylation, a reaction catalyzed primarily by cytochrome P450 2E1, was evaluated. As expected, NADPH‐supported chlorzoxazone hydroxylation was absent in liver microsomes from oxidoreductase‐null mice, whereas NADH‐supported activity was about twofold higher than that found in normal (wild‐type) liver microsomes. This greater activity in oxidoreductase‐null microsomes could be attributed to the fourfold higher level of CYP2E1 and 1.4‐fold higher level of cytochrome b5. Chlorzoxazone hydroxylation in hepatocytes from oxidoreductase‐null mice was about 5% of that in hepatocytes from wild‐type mice and matched the results obtained with wild‐type microsomes, where activity obtained with NADH was about 5% of that obtained when both NADH and NADPH were included in the reaction mixture. These results argue that the cytochrome b5 electron transfer pathway can support a low but measurable level of CYP2E1 activity under physiological conditions. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:357–363, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20299
Keywords:Cytochrome b5  Cytochrome P450 Oxidoreductase  Cytochrome P450 2E1  Chlorzoxazone  Hepatocytes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号