Label‐free quantitative proteome analysis of skeletal tissues under mechanical load |
| |
Authors: | Wei‐Bing Zhang Lin Wang |
| |
Affiliation: | Department of Cellular and Developmental Biology, Institute of Stomatology, Nanjing Medical University, Nanjing, China |
| |
Abstract: | Skeletal tissue has the capability to adapt its mass and structure in response to mechanical stress. However, the molecular mechanism of bone and cartilage to respond to mechanical stress are not fully understood. A label‐free quantitative proteome approach was used for the first time to obtain a global perspective of the response of skeletal tissue to mechanical stress. Label‐free quantitative analysis of 1D‐PAGE‐LC/MS/MS based proteomics was applied to identify differentially expressed proteins. Differential expression analysis in the experimental groups and control group showed significant changes for 248 proteins including proteins related to proliferation, differentiation, regulation of signal transduction and energy metabolic pathways. Fluorescence labeling by incorporation of alizarin/calcein in newly formed bone minerals qualitatively demonstrated new bone formation. Skeletal tissues under mechanical load evoked marked new bone formation in comparison with the control group. Bone material apposition was evident. Our data suggest that 39 proteins were assigned a role in anabolic process. Comparisons of anabolic versus catabolic features of the proteomes show that 42 proteins were related to catabolic. In addition, some proteins were related to regulation of signal transduction and energy pathways, such as tropomyosin 4, fibronectin 1, and laminin, might be new molecular targets that are responsive to mechanical force. Differentially expressed proteins identified in this model may offer a useful starting point for elucidating novel aspects of the effects of mechanical force on skeletal tissue. J. Cell. Biochem. 108: 600–611, 2009. © 2009 Wiley‐Liss, Inc. |
| |
Keywords: | label‐free quantitative proteomics mass spectrometry bone cartilage mechanical loading |
|
|