首页 | 本学科首页   官方微博 | 高级检索  
     


The Effect of Major Nutrient Elements on the Growth and Population Homogeneity of the R,S, and M Dissociants of Pseudomonas aeruginosa and the Glucose Oxidation and Fermentation Pathways
Authors:Mil'ko  E. S.  Il'inykh  I. A.
Affiliation:(1) Faculty of Biology, Moscow State University, Vorob'evy gory, Moscow, 119992, Russia
Abstract:The population homogeneity of the stationary-phase monocultures of Pseudomonas aeruginosa dissociants was studied as a function of the initial content of major nutrient elements (C, N, and P) in the cultivation medium. The monocultures of the dissociants remained homogeneous during cultivation if the initial concentrations of the major nutrient elements were either sufficiently high or, conversely, very low, but became heterogeneous during cultivation in unbalanced (with respect to the major nutrient elements) media. At an initial concentration of nitrate in the medium equal to 0.07% or phosphate equal to 0.004–0.014%, the initially homogeneous population of R dissociant cultivated to the stationary growth phase turned out to contain 30–40% of S-type cells, whereas the initially homogeneous population of S dissociant was found to contain 50–80% of M-type cells. The population of M dissociant remained homogeneous throughout the cultivation period. R dissociant grew better at sufficiently high concentrations of glucose, nitrate, and phosphate in the medium, whereas M dissociant grew better when the initial concentrations of these nutrients were low. During the cultivation of R dissociant, the pH of the medium changed insignificantly, and the C/P ratio (the ratio of the carbon and phosphorus consumed during growth) was minimal (among the three dissociants), indicating that the R dissociant accomplishes the oxidative pathway of glucose metabolism. During the cultivation of the M dissociant, the pH of the medium dropped to 3.4–3.9, and the C/P ratio was maximal, indicating that this dissociant accomplishes the fermentative pathway of glucose metabolism. During the cultivation of the S dissociant, the pH of the medium and the C/P ratio exhibited variations, indicating that this dissociant triggers its pathways of glucose metabolism.
Keywords:population homogeneity  dissociation  medium composition  growth dynamics  Pseudomonas aeruginosa
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号