首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insulin regulation of glucose metabolism in HT29 colonic adenocarcinoma cells: activation of glycolysis without augmentation of glucose transport
Authors:C C Franklin  P C Chin  J T Turner  H D Kim
Institution:Department of Pharmacology, School of Medicine, University of Missouri-Columbia 65212.
Abstract:The effects of insulin on glucose transport and metabolism were examined in cultured HT29 human colonic adenocarcinoma cells. The presence of glucose transporters was verified by D-glucose displaceable 3H]cytochalasin B binding. The Kd and Bmax values from cytochalasin B binding studies were 190 +/- 30 nM and 8.4 +/- 1.4 pmol/mg protein, respectively. Glucose transport determined with 3-O-methylglucose showed saturable kinetics with a Km of 5.8 +/- 0.4 mM and a Vmax of 0.047 +/- 0.003 mumol/mg protein per min at 25 degrees C. Moreover, in HT29 cells, two classes of insulin binding sites were detected in radioligand binding experiments. Although insulin failed to stimulate glucose transport, it was found to activate glycolysis in HT29 cells. Glucose consumption increased from 0.33 +/- 0.03 mumol/mg protein per h to 0.49 +/- 0.05 mumol/mg protein per h and lactate production was augmented from 0.67 +/- 0.04 mumol/mg protein per h to 0.87 +/- 0.06 mumol/mg protein per h in response to 10(-7) to 10(-5) M insulin. Insulin also enhanced mannose metabolism. Apart from these two hexoses, HT29 cells exhibited a surprisingly narrow substrate specificity. With the possible exception of glyceraldehyde, little lactate was produced from alternative substrates, including adenosine, inosine, ribose, deoxyribose, dihydroxyacetone, galactose and fructose either with or without insulin. Despite its limited utilization by the glycolytic pathway, adenosine was readily salvaged for de novo synthesis of adenine nucleotides. These findings suggest that insulin directly influences substrate utilization through the glycolytic pathway in HT29 cells without activating the glucose transport pathway.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号