首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reduced redox-dependent mechanism and glucose-mediated reversal in gentamicin-resistant Vibrio alginolyticus
Authors:Song Zhang  Jie Wang  Ming Jiang  Di Xu  Bo Peng  Xuan-xian Peng  Hui Li
Institution:1. Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006 People's Republic of China;2. Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006 People's Republic of China

Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China

Abstract:Strategy of managing antibiotic-resistant Vibrio alginolyticus, a bacterial pathogen that threatens human health and animal farming, is not available due to the lack of knowledge about the underlying mechanism of antibiotic resistance. Here, we showed that gentamicin-resistant V. alginolyticus (VA-RGEN) has four mutations on metabolism and one mutation on a two-component system by whole-genome and PCR-based sequencing, indicating the metabolic shift in VA-RGEN. Thus, metabolic profile was investigated by GC–MS based metabolomics. Glucose was identified as a crucial biomarker, whose abundance was decreased in VA-RGEN. Further analysis with iPath, and gene expression and enzyme activity of the pyruvate cycle (the P cycle) demonstrated a global depressed metabolic pathway network in VA-RGEN. Consistently, NADH, sodium-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) system, membrane potential and intracellular gentamicin were decreased in VA-RGEN. These findings indicate that the reduced redox state contributes to antibiotic resistance. Interestingly, exogenous glucose potentiated gentamicin to efficiently kill VA-RGEN through the promotion of the P cycle, NADH, membrane potential and intracellular gentamicin. The potentiation was further confirmed in a zebrafish model. These results indicate that the gentamicin resistance reduces the P cycle and Na(+)-NQR system and thereby decreases redox state, membrane potential and gentamicin uptake, which can be reversed by exogenous glucose.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号