首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of conditioning polarization of soma of giant neurons of mollusks on the mechanism of action-potential generation
Authors:I S Magura  O A Kryshtal
Abstract:To ascertain the properties of an excitable membrane of the soma of giant neurons of mollusks, experiments were carried out to study the effect of conditioning shift of the membrane potential on the mechanism of action-potential generation. The effect of conditioning was assessed from changes in the action-potential curve and its first derivative, as well as from the curve of transmembrane currents under voltage clamp conditions. It was found that a change in membrane potential evokes at least two reactions which have opposite effects on the mechanism of generation of action potentials. These reactions evidently have different time characteristics. One of these does not differ notably from the reaction recorded for other excitable structures, and is manifested in the activation (with hyperpolarization) or inactivation (with depolarization) of the mechanism generating action potentials. The other reaction contributes either to an increase (with depolarization) or a decrease (with hyperpolarization) in the efficiency of this mechanism. Conditioning polarization also has a marked effect on the system responsible for repolarization of the membrane during generation of action potentials. This effect is manifested in a change in the reaction of this system to tetraethylammonium ions. The specific membrane systems sustaining excitability and reacting to changes in the strength of the membrane's electrical field were found to be very inert. After a shift in the potential to a given stable level a rearrangement, lasting sometimes tens of seconds, takes place in the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 91–99, January–February, 1970.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号