首页 | 本学科首页   官方微博 | 高级检索  
   检索      

氯雷他定的生物信息学分析及其对COVID-19的潜在治疗意义
引用本文:陈浩然,徐和福,陈熙勐,张皓旻,张钧栋,智鹏,李卓阳,刘格良,王毅兴,卢学春.氯雷他定的生物信息学分析及其对COVID-19的潜在治疗意义[J].生物信息学,2021,19(2):92-104.
作者姓名:陈浩然  徐和福  陈熙勐  张皓旻  张钧栋  智鹏  李卓阳  刘格良  王毅兴  卢学春
作者单位:山西医科大学 管理学院,太原 030000;天津康复疗养中心 检验病理科,天津 300381;解放军总医院 第二医学中心血液科 国家老年疾病临床医学研究中心,北京 100853;同济大学附属东方医院 中医科,上海 200120
基金项目:2017 年度国家老年疾病临床医学研究中心招标课题(No.NCRCG-PLAGH-2017011) ; 解放军总医院转化医学项目(No.2017TM-020).
摘    要:为探讨氯雷他定对新型冠状病毒肺炎的潜在治疗作用.从基因表达谱数据库(Gene expression omnibus,GEO)获取氯雷他定数据,分别进行差异分析、基因本体学(GO)富集分析、京都基因与基因组百科全书(KEGG)富集分析、蛋白质相互作用(Protein-protein interaction,PPI)网络分...

关 键 词:氯雷他定  冠状病毒  基因表达谱  临床生物信息学  EpiMed
收稿时间:2020/5/18 0:00:00
修稿时间:2020/8/10 0:00:00

Bioinformatics analysis of loratadine and its potential therapeutic significance for COVID-19
CHEN Haoran,XU Hefu,CHEN Ximeng,ZHANG Haomin,ZHANG Jundong,ZHI Peng,LI Zhuoyang,LIU Geliang,WANG Yixing,LU Xuechun.Bioinformatics analysis of loratadine and its potential therapeutic significance for COVID-19[J].China Journal of Bioinformation,2021,19(2):92-104.
Authors:CHEN Haoran  XU Hefu  CHEN Ximeng  ZHANG Haomin  ZHANG Jundong  ZHI Peng  LI Zhuoyang  LIU Geliang  WANG Yixing  LU Xuechun
Institution:School of Management, Shanxi Medical University, Taiyuan 030000,China;Department of Laboratory Pathology, Tianjin Rehabilitation and Sanatorium Center, Tianjin 300381, China;Department of Hematology, Second Medical Center, PLA General Hospital, Beijing 100853, China;Department of Traditional Chinese Medicine, Oriental Hospital of Tongji University, Shanghai 200120, China
Abstract:To explore the potential therapeutic effect of loratadine on new coronavirus pneumonia (COVID-19), loratadine data was obtained from Gene Expression Omnibus (GEO). Differential analysis, gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Protein-Protein Interaction (PPI) network analysis were conducted,and key genes were screened. Using the Epigenomic Precision Medicine Prediction Platform (EpiMed) established earlier by the research group for correlation analysis, the negatively related diseases, positive relevant drugs, and targets in vivo were screened out, and the literature of coronavirus and key targets in Chinese and English databases were studied for verification. Results show that a total of 642 differential genes were screened out, including 230 up-regulated and 412 down-regulated. Among them, most of the genes enriched in GO were involved in the processes of inflammatory reaction, hormone action, and metabolism of glycolipids. The KEGG pathway was mainly enriched with various viral infections, inflammatory mediators, complement and coagulation, digestive tract damage, arrhythmia, and oxidative stress. Combined with the prediction results of EpiMed, it was found that the effect of loratadine on the genome-wide expression profile was complex. In PPI, a total of 642 proteins were obtained, and 10 hub genes were selected, mainly related to nerve signal transduction, phosphorylation, inflammatory response, and other functions. EpiMed results indicate that loratadine may have potential therapeutic effects, including severe acute respiratory syndrome (SARS), influenza, community-acquired pneumonia, severe sepsis, respiratory syncytial virus infection, etc. Drugs that may have a therapeutic effect on COVID-19 were predicted, including etanercept, famciclovir, nevirapine, fluvastatin, chloroquine phosphate, polygonum cuspidatum, houttuynia cordata, forsythia, liquorice, and common anemarrhena rhizome. Through text mining, a total of 14 articles related to the role of coronaviruses and key targets were retrieved, which verified the effectiveness of the key targets. Therefore, loratadine can regulate heart regulation, immune response, oxidative stress, viral infections, and other processes or pathways. It may have anti-viral, immune regulation, and organ protection functions at the same time. The results have potential therapeutic significance for COVID-19 critically ill patients.
Keywords:Loratadine  Coronavirus  Gene expression profile  Clinical bioinformatics  EpiMed
本文献已被 CNKI 等数据库收录!
点击此处可从《生物信息学》浏览原始摘要信息
点击此处可从《生物信息学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号