Electrostatic contribution of serine phosphorylation to the Drosophila SLBP--histone mRNA complex |
| |
Authors: | Thapar Roopa Marzluff William F Redinbo Matthew R |
| |
Affiliation: | Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. |
| |
Abstract: | Unlike all other metazoan mRNAs, mRNAs encoding the replication-dependent histones are not polyadenylated but end in a unique 26 nucleotide stem-loop structure. The protein that binds the 3' end of histone mRNA, the stem-loop binding protein (SLBP), is essential for histone pre-mRNA processing, mRNA translation, and mRNA degradation. Using biochemical, biophysical, and nuclear magnetic resonance (NMR) experiments, we report the first structural insight into the mechanism of SLBP-RNA recognition. In the absence of RNA, phosphorylated and unphosphorylated forms of the RNA binding and processing domain (RPD) of Drosophila SLBP (dSLBP) possess helical secondary structure but no well-defined tertiary fold. Drosophila SLBP is phosphorylated at four out of five potential serine or threonine sites in the sequence DTAKDSNSDSDSD at the extreme C-terminus, and phosphorylation at these sites is necessary for histone pre-mRNA processing. Here, we provide NMR evidence for serine phosphorylation of the C-terminus using (31)P direct-detect experiments and show that both serine phosphorylation and RNA binding are necessary for proper folding of the RPD. The electrostatic effect of protein phosphorylation can be partially mimicked by a mutant form of SLBP wherein four C-terminal serines are replaced with glutamic acids. Hence, both RNA binding and protein phosphorylation are necessary for stabilization of the SLBP RPD. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|