首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrostatic contribution of serine phosphorylation to the Drosophila SLBP--histone mRNA complex
Authors:Thapar Roopa  Marzluff William F  Redinbo Matthew R
Institution:Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Abstract:Unlike all other metazoan mRNAs, mRNAs encoding the replication-dependent histones are not polyadenylated but end in a unique 26 nucleotide stem-loop structure. The protein that binds the 3' end of histone mRNA, the stem-loop binding protein (SLBP), is essential for histone pre-mRNA processing, mRNA translation, and mRNA degradation. Using biochemical, biophysical, and nuclear magnetic resonance (NMR) experiments, we report the first structural insight into the mechanism of SLBP-RNA recognition. In the absence of RNA, phosphorylated and unphosphorylated forms of the RNA binding and processing domain (RPD) of Drosophila SLBP (dSLBP) possess helical secondary structure but no well-defined tertiary fold. Drosophila SLBP is phosphorylated at four out of five potential serine or threonine sites in the sequence DTAKDSNSDSDSD at the extreme C-terminus, and phosphorylation at these sites is necessary for histone pre-mRNA processing. Here, we provide NMR evidence for serine phosphorylation of the C-terminus using (31)P direct-detect experiments and show that both serine phosphorylation and RNA binding are necessary for proper folding of the RPD. The electrostatic effect of protein phosphorylation can be partially mimicked by a mutant form of SLBP wherein four C-terminal serines are replaced with glutamic acids. Hence, both RNA binding and protein phosphorylation are necessary for stabilization of the SLBP RPD.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号